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Change-point problems for the von Mises
distribution
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ABSTRACT A generalized likelihood ratio procedure and a Bayes procedure are considered

for change-point problems for the mean direction of the von Mises distribution, both when

the concentration parameter is known and when it is unknown. These tests are based on

sample resultant lengths. Tables that list critical values of these test statistics are provided.

These tests are shown to be valid even when the data come from other similar unimodal

circular distributions. Some empirical studies of powers of these test procedures are also

incorporated.

1 Introduction

Suppose that we have a set of independent and identically distributed measurements

on two-dimensional directions, say a 1 , a 2 , . . . , a n . These measurements, called

angular or circular data, can be represented as points on the circumference of a
circle with unit radius. They may be wind directions, the vanishing angles at the

horizon for a group of birds or the times of arrival at a hospital emergency room,

where the 24-hour cycle is represented as a circle. Such data may have one or

more peaks, or may show no preferred direction, corresponding to an isotropic

distribution. We are interested in studying whether there has been a change in the

preferred direction in the time-ordered data set, where the location of the change-
point, if any, is unknown.

As an example, consider a meteorologist studying wind directions. Using previ-

ously gathered data, the meteorologist might be interested in knowing if there has

been a change in the direction of the wind ¯ ow at some intermediate time point.

Another interesting example is given in Lombard (1986), concerning the evaluation
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of ¯ ares. Flares are launched upward attached to a projectile from a point O in a

® xed direction. The quantity of interest is the latitude h of the vector O
®
P, where P

is the point at which the ¯ are starts to burn. The variability of h represents the

stability of the ¯ are-projectile assembly.

Formally, let a 1 , . . . , a n be angular measurements measured in a time-ordered or

space-ordered sequence. Assume that, for some unknown (but ® xed) k, (1 < k < n),
a 1 , . . . , a k ~ F1 and a k + 1 , . . . , a n ~ F2( ¹ F1 ). Here, k is called the change-point of

the data. If k 5 n, then there are no observations from F2 , meaning that all the

observations are from the same population so that there is no change-point. We

are interested in testing for the presence of a change-point. Hence, we are testing

H0 : k 5 n vs H1 : 1 < k < n 2 1. For concreteness and simplicity, we assume that

the two populations F1 and F2 follow the von Mises distribution (sometimes also
known as the circular normal distribution) with a common concentration parameter

j , and that the mean directions are given by l 1 and l 2 respectively.

Change-point problems have evoked a considerable amount of interest in the

statistical community, as a result of their application-oriented ¯ avor. The reader is

referred to Sen and Srivastava (1975), HorvaÂ th (1993), Gombay and HorvaÂ th

(1990) and Page (1955) for a good exposition on the subject. All these authors
(and many others) deal with the problem for data on the (real-) line. The interest

in change-point problems for directional data is relatively new. Fisher (1993)

presents some discussion on this topic, as do Lombard (1986) and CsoÈ rgoÍ and

HorvaÂ th (1996)Ð all of which deal with non-parametric methods. No work appears

to have been done on parametric tests for the change-point problem on a circle.
Section 2 deals with the derivation of tests when j is known and when j is

unknown. In both cases, we use the generalized likelihood ratio method to derive

tests for H0 vs H1 . We obtain the exact critical values of the test statistics, through

simulation.

An alternative method, with a Bayesian ¯ avor, assumes that the change-point is

equally likely to be at any one of the intermediate points. Hence, using a discrete
uniform prior over the possible change-point values, we obtain an alternate statistic.

If we have further information about the possible point of change, we can incorporate

that into an appropriate prior on k and derive the corresponding Bayes procedure.

The results for the critical values of the test statistics, obtained through simula-

tions, are presented in Section 3. They are provided as `nomograms’ from which

one can read the 5% values. The authors may be contacted for the code, if other
values are of interest. In Section 4, we analyze a real data set using our tests and,

in Section 5, we compare the powers of the two procedures. Finally, in Section 6, we

ascertain the model robustness of these procedures to the von Mises distributional

assumption.

2 The tests

We say that a random angle a has a von Mises distribution with mean direction l

and concentration parameter j (i.e. vM( l , j )) if it has the probability density

function

f( a ) 5
1

2 p I0 ( j )
exp[ j cos( a 2 l )], 2 p < l , a < p , j > 0

The change-point in the mean direction at k implies that a 1 , . . . , a k ~ vM( l 1 , j )

and that a k + 1 , . . . , a n ~ vM( l 2 , j ).



Change-point problems for von Mises distribution 425

2.1 j known case

If h 5 (k , l 1 , l 2 ) denotes the parameter vector for our problem, then the parameter

space is X 5 {1, . . . , n} 3 [ 2 p , p ) 3 [ 2 p , p ). Technically, we might say that the

hypothesis of no change corresponds to the change-point at n, so that, under H0 ,

the parameter space becomes x 5 X

f

H0 5 {n} 3 [ 2 p , p ) 3 [ 2 p , p ). If the change

in mean takes place at the point k, then the likelihood function is given by

L( h ) 5
1

[2 p I0 ( j )]n
exp {j [R

k

i 5 1

cos( a i 2 l 1 ) + R
n

i 5 k + 1

cos( a i 2 l 2)]} (1)

Let (R1k , a Å 1k ), (R2k , a Å 2k ) and (R, a Å 0) denote the length and direction of the resultant
of the subsets ( a 1 , . . . , a k ) , ( a k + 1 , . . . , a n ) and the combined sample ( a 1 , . . . , a n )

respectively. It can easily be veri® ed that, under H0 , the maximum-likelihood

estimate (MLE) of l satis® es

R
n

i 5 1

sin(a i 2 l Ã 0 ) 5 0 . (2)

Similarly, under H1 , for a given k, the MLEs of l 1 and l 2 satisfy

R
k

i 5 1

sin( a i 2 l Ã 1k ) 5 0 (3)

and

R
n

i 5 k + 1

sin( a i 2 l Ã 2k ) 5 0 . (4)

The solutions to equations (2)± (4) are given by l Ã 0 5 a Å 0 , l Ã 1k 5 a Å 1k and l Ã 2k 5 a Å 2k

respectively.

Since

R
n

i 5 1

cos( a i 2 a Å 0 ) 5 R
n

i 5 1

cos a i cos a Å 0 + R
n

i 5 1

sin a i sin a Å 0

5 R cos a Å 0 cos a Å 0 + R sin a Å 0 sin a Å 0 (5)

5 R ,

the likelihood ratio becomes

K k 5 exp{j [R
n

i 5 1

cos( a i 2 a Å 0 ) 2 R
k

i 5 1

cos( a i 2 a Å 1k ) 2 R
n

i 5 k + 1

cos( a i 2 a Å 2k )]}
5 exp[ j (R 2 R1k 2 R2k )]

The validity of H0 is questioned if K k is `suý ciently small’ . However, since we do
not know k, we have two options: one option is the frequentist approach, where

we treat k also as a parameter as indicated and minimize the likelihood ratio K k

over k; the other option is to take a Bayesian approach and average K k over a prior

distribution on {1, . . . , n}. In the ® rst case, the likelihood ratio test (LRT) of H0 vs

H1 would reject H0 for small values of infk K k or, equivalently, since j is known, it

would reject H0 for large values of

K 5 sup
j Î {1, . . . , n}

(R1k + R2k ) 2 R .
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FIG. 1. 5% cut-oþ s of the avg statistic, j known.

This leads to rejecting H0 when

K > c (6)

where the cut-oþ point c is determined based on the signi® cance level of the test.
In all further discussion, we refer to this test as the supremum or `sup’ test.

In contrast, for our Bayesian analog, assuming a uniform prior on the possible

values of k, we reject H0 whenever

1

n R
n

k 5 1

(R1k + R2k ) 2 R> cÂ (7)

where cÂ is also determined based on the signi® cance level. We refer to this test as
the average or `avg’ test.

The joint distribution of (R1k , R2k) is known (see, for example, Mardia, 1972,

p. 97) for any ® xed k and is indeed, independent of j , conditional on R. However,

the joint distributions of (R1k , R2k )n
k 5 1 , on which the exact theory of `sup’ and `avg’

depend, do not appear to have any reasonable analytic form, partly because they
are not independent for diþ erent k. The only solution appears to be to simulate

their cut-oþ points for various combinations of j and n, which is what we do. The

results are represented graphically in Figs 1 and 2.

2.2 j unknown case

Here, we have a four-dimensional parameter h 5 (k, l 1 , l 2 , j ) with the parameter

space X 5 {1, . . . , n} 3 [ 2 p , p ) 3 [ 2 p , p ) 3 (0, ` ). Arguing as before, under H0 ,

the parameter space becomes x 5 X

f

H0 5 {n} 3 [ 2 p , p ) 3 [ 2 p , p ) 3 (0, ` ).
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FIG. 2. 5% cut-oþ s of the sup statistic, j known.

The likelihood function for the data is given by equation (1) with the new

parameter vector h . It can easily be veri® ed that, under H0 , the MLEs of l and j

satisfy equation (2) and

I1 ( j Ã 0 )

I0 ( j Ã 0 )
5

R

n
. (8)

Similarly, under H1 for a given k, the MLEs satisfy equations (3), (4) and

I1( j Ã k )

I0( j Ã k )
5

R1k + R2k

n
. (9)

Again, the solutions to equations (3) and (4) are given by l Ã 1k 5 a Å 1k and l Ã 2k 5 a Å 2k

respectively.

Hence, the likelihood ratio of the data (for a given k) is

K k 5 [I0 ( j Ã k )

I0 ( j Ã 0 )]n

exp{j Ã 0 R
n

i 5 1

cos( a i 2 a Å 0) 2 j Ã k[R
k

i 5 1

cos( a i 2 a Å 1k ) + R
n

i 5 k + 1

cos( a i 2 a Å 2k )]}
5 [I0 ( j Ã k )

I0 ( j Ã 0 )]n

exp[ j Ã 0 R 2 j Ã k (R1k + R2k )] .

This gives

k k 5 2 log K k

5 n{log[I0 ( j Ã 0 )] 2 log[I0 ( j Ã k )]} + [ j Ã k (R1k + R2k ) 2 j Ã 0 R]

5 n[ W (R1k + R2k ) 2 W (R)]
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FIG. 3. 5% cut-oþ s of the avg statistic, j unknown.

where

W (t) 5 tA 2 1(t) 2 log{I0 [A 2 1(t)]}

and A(´) is de® ned as

A(t) 5
I1 (t)

I0 (t)
.

As before, since k is unknown, we employ the sup and avg methods to come up
with two test criteria, i.e. supk W (R1k + R2k ) 2 W (R) and

1

n R
n

k 5 1

W (R1k + R2k ) 2 W (R)

In both the cases, however, the null distribution of the test statistic depends on

(the unknown) j . To make our tests j -free, we condition on the overall resultant

length R. Making use of the monotonic nature of W (´) (see Mardia, 1972, p. 134),

the two (conditional) tests then become the same as the sup and avg tests given in

equations (6) and (7) respectively. The only diþ erence from the j known case is

that the test statistic values are conditional on R. The cut-oþ s of these two
conditional tests are determined based on the signi® cance level.

Simulation results for the 5% cut-oþ points of the two conditional tests are given

in Figs 3 and 4.

3 Simulation results

The tests proposed in the previous sections have no simple known distributional

form. Thus, to obtain their cut-oþ values, we resorted to large-scale Monte Carlo
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FIG. 4. 5% cut-oþ s of the sup statistic, j unknown.

simulations. All the codes were written in the C language, with calls to the IMSL /
C /STAT library for the random number generators. In particular, we made extensive

use of the routine imsls_f_random_von_mises to generate all the von Mises random
deviates.

For the j known case, we sampled from a von Mises distribution with center

zero and concentration j (i.e. vM(0, j )). We considered j 5 0.5(0.5)3(1)4 and

n 5 10(2)20(5)50. For each (n, j ) combination, we carried out 100 000 simulations

to obtain upper 5% points of the two tests. The results appear in Figs 1 and 2.

These ® gures, called `nomograms’ , list the cut-oþ s at a speci® c j value along
each line.

For the j unknown case, we sampled from a conditional von Mises distribution,

the conditioning event being the given length r of the resultant R. Each (r, n)

combination results in a diþ erent distribution and we considered n 5 10(2)20(5)50

and r /n 5 0.05(0.05)0.95. Since the conditional sampling discards many of the

random numbers for not meeting the conditioning criterion, the sampling proce-
dure was much slower compared with the unconditional case. Apart from using

imsls_f_random_von_mises, we used imsls_f_random_binomial to draw the conditional

samples. The results of 100 000 simulations appear as nomograms in Figs 3 and 4.

Casual examination of the nomograms suggest that high j values for the

unconditional case (and, correspondingly, high r /n values for the conditional case)
make the test statistics (and hence, the cut-oþ s) free of n. This is re¯ ected by the

almost horizontal lines in the corresponding ® gures. In particular, for the avg

statistic in the j known case, the 100(1 2 a )% cut-oþ s are approximated very well by

1

2 j
v

2
1; a

when j > 2.
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This may be explained by the fact that, for large j and any ® xed k, 2 j (n 2 R)

has an approximate v
2
n 2 1 distribution. Hence, for each k, we have

2 j (R1k + R2k 2 R) ~ v
2
1

When we take the average of this over k, we obtain an average of dependent v
2
1 and

the result is approximated quite well by a v
2
1 random variable. There does not seem

to be any easy explanation for the sup statistic.

A similar phenomenon (albeit less pronounced) occurs for the j unknown case.

Then, for high r /n, the cut-oþ for avg does not change greatly with changing

n (r /n measures the unknown concentration in this case).

4 An example

To see how well our tests work, we used the following data from Schmidt-Koenig

(1958).

Example 1. In an experiment on pigeon-homing, the internal clocks of 10 birds

were reset by 6 hours clockwise, while the clocks of nine birds were left unaltered.
It is predicted from sun± azimuth compass theory that the mean direction of the

vanishing angles in the experimental group should deviate by about 90ë in the anti-

clockwise direction with respect to the mean direction of the angles of the birds in

the control group. The vanishing angles of the birds for this experiment are as

follows, measured (in degrees) in the clockwise sense:

control groupÐ 75, 75, 80, 80, 80, 95, 130, 170, 210

experimental groupÐ 10, 50, 55, 55, 65, 90, 285, 285, 325, 355

Do the data support sun± azimuth compass theory?

To see how well our test procedures work, we consider the combined time-ordered
sample of 19 observations. For this sample, we test for the presence of a change-

point, if any. Since j is unknown, we use the conditional tests. Calculations yield

avg 5 1.745 029, sup 5 5.289 31 and r /n 5 0.48. Consulting Figs 3 and 4, we see

that both our tests reject the null hypothesis at the 1% level. This is not surprising,

in view of the fact that Mardia (1972, p. 156) considers the same example and

tests for the equality of mean directions, assuming that the two samples come from
von Mises distributions with equal (but unknown) concentration. His test shows

that the populations are indeed diþ erent.

5 Power comparisons

Using Monte Carlo simulations, a power comparison of the two statistics was made
for the j known case. All the results here are based on 1000 simulations each. We

considered n 5 10, 15 and 20 with change points at k 5 1, [n /4] and [n /2] for each

n, where [x] denotes `the greatest integer less than or equal to x’ . We also chose

j 5 0.5, 1, 2 and 4. Finally, the diþ erence in the mean directions D 5 ½ l 1 2 l 2 ½ that

we considered are p /10( p /10) p . Some of the graphs are presented in Figs 5 ± 7. The

results obtained may be summarized as follows.

(1) Both the tests are symmetric in the change-point k, in the sense that the

power at k is approximately equal to the power at n 2 k, everything else

being the same. This symmetry in our test procedures is to be expected.
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FIG. 5. Eþ ect of j on powers of the two tests.

FIG. 6. E þ ect of k on powers of the two tests.

(2) As would be expected, the powers of both the statistics show an increasing

trend as D increases, everything else being the same. The trend is not as

pronounced for smaller values of the concentration parameter as in the case

of larger values.
(3) For a high concentration parameter j , the average statistic is more powerful

than the sup statistic if the change-point is near the center (i.e. k » n /2).

The maximum power reached in this case is almost 1 for both statistics.

However, if the change point is near the end (k » 1), then the sup statistic

becomes more powerful for high concentrations. The maximum power

reached in this case is about 50% for the sup statistic compared with 20%
for the avg statistic.

Hence, as intuition suggests, it is easier to detect a change-point in the

middle than at the end. If one suspects change at the end points, then the

sup statistic is recommended.
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FIG. 7. E þ ect of n on powers of the two tests.

(4) For k » n /4, both the tests behave very similarly, having almost the same

power curve, irrespective of n and j .

(5) If there is a very low concentration in the data, then neither test is useful,

since the maximum power obtained is as low as 15%, even for n 5 20. Thus,
trying to detect changes in the mean direction when the distributions are

nearly uniform is futile.

(6) For a given j , the power increases with n, as long as the k /n ratio remains

constant. Hence, an increase in sample size means an increase in power.

Based on these ® ndings, we would recommend the use of the sup statistic if we
have some previous knowledge that the change-point occurred at the end and that

the concentration is high ( j > 3.5). If we think that the change-point is in the

middle and that the concentration is moderate to high, then we recommend using

the avg statistic. If the concentration is low ( j < 2), then neither statistic is useful.

A power comparison was made using similar Monte Carlo techniques for the j

unknown case, and the results are a repetition of the j known case, with r /n taking

the role of j . Hence, we do not give any separate pictures for this case.

6 Robustness

The simulation results we obtained depend entirely on the von Mises assumption

for the distribution of the data. To investigate the eþ ect of misspeci® cation of the
distribution, we carried out simulations with data from wrapped normal and

wrapped Cauchy distributions. The cut-oþ points for the wrapped normal, wrapped

Cauchy and von Mises distributions for n 5 20 and j 5 0.5(0.5)3(1)4 data are

given in Table 1. For each (n, j ) combination, we carried out 100 000 simulations.

For low values of j ( j 5 0.5), the von Mises distribution gives results close to those

with the wrapped Cauchy distribution. However, for higher j , the von Mises results
are closer to those with the wrapped normal distribution. Also, of the two tests,

the avg statistic seems to be more robust than the sup statistic.

Suppose that we have angular data and we want to see if there is a change in the

preferred mean direction at some intermediate (unknown) point, without making
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TABLE 1. 5% (1%) cut-oþ s of the test statistics for the unconditional case, n 5 20

Wrapped normal Wrapped Cauchy von Mises

avg. sup. avg. sup. avg. sup.

0.5 3.01 (4.01) 6.77 (8.41) 2.42 (3.46) 5.85 (7.56) 2.40 (3.42) 5.82 (7.56)

1.0 1.37 (2.10) 3.90 (5.33) 1.39 (2.19) 4.02 (5.65) 1.37 (2.12) 3.93 (5.44)

1.5 0.91 (1.39) 2.77 (3.79) 0.85 (1.35) 2.92 (4.07) 0.88 (1.36) 2.78 (3.83)

2.0 0.67 (1.04) 2.07 (2.87) 0.58 (0.95) 2.11 (3.41) 0.65 (1.00) 2.05 (2.93)

2.5 0.53 (0.82) 1.66 (2.29) 0.44 (0.72) 1.96 (2.83) 0.51 (0.79) 1.74 (2.30)

3.0 0.43 (0.66) 1.37 (1.88) 0.35 (0.57) 1.86 (2.40) 0.42 (0.66) 1.43 (1.95)

4.0 0.32 (0.49) 1.02 (1.39) 0.25 (0.42) 1.64 (2.00) 0.31 (0.48) 1.04 (1.48)

any assumptions about these two distributions. In other words, we wish to

determine how justi® ed the tests proposed here are in the absence of any parametric
model. Although we depended heavily on the exact form of the parent distribution

(von Mises) to derive these tests, we believe that these tests are justi® ed when the

underlying models are unimodal, for which the resultant length and direction are

relevant measures. Since a good measure of the distance between two angles x and

y in directional data is given by 1 2 cos(x 2 y) corresponding to (x 2 y)2 for linear
data, (n 2 R) is a measure of dispersion of a set of n angles. If there is a change-

point at k, then the overall dispersion might be large, while the dispersions of the

two individual groups are expected to be small. Hence, a statistic to detect change-

point is

(n 2 R) 2 [(k 2 R1k ) + (n 2 k 2 R2k )] 5 R1k + R2k 2 R

This is the same idea as used in the approximate analysis of variance for circular

data (see Harrison et al., 1986; Rao & Sengupta, 1970; Watson, 1966). Since k is

unknown, we average over k or take the supremum over k, as we have done to
obtain our tests.

Of course, the test statistic cut-oþ s cannot be obtained as before by simulation;

we might have to resort to bootstrapping for them.

7 Concluding remarks

This paper discusses some speci® c change-point problems encountered in direc-

tional data analysis. In particular, we assume that the change-point is discrete and

that the observations are all independent. A more practical scenario would be when

the two assumptions do not holdÐ but the analysis becomes much more diý cult

in such cases. We plan to investigate further these cases in a later work.
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